
Adversarial Attacks on Neural Networks

By Christo-Odysseus Keramitzis

1. Introduction

This report will explore the effect of Adversarial attacks and their implications on generating
adversarial objects that reduce accuracy in neural networks, specifically convolutional neural
networks(CNN). This will be shown through the analysis of targeted Fast gradient sign
method (T-FGSM) attacks and the corresponding defence of adversarial training to detect
the perturbed data. Adversarial attacks aim at generating false input perceived as normal.
The purpose is to create noise that will over time degrade the accuracy of the algorithm. This
is done through perturbations of input gradients that slowly corrupt the algorithm's decisions.
The influence gradients of data has upon standard accuracy will be a primary focus including
how small gradient and parameter changes gradually alter the functioning of the CNN model.
As this subject is becoming increasingly prevalent in society as ad-hoc and mass adoption of
artificial intelligence throughout all aspects of life is becoming increasingly common; in
addition to its rapid development, the game of tug between bad actors against artificial
intelligence and security specialist is becoming more uncertain as new methods of attack
and mitigations are continuously being developed. The aim is to achieve a holistic
understanding of the fragility of neural networks and the necessity to harden their security
against adversarial attacks.

2. Reasonable solution on the project

The CNN will use a preconfigured
data set that consists of classes ‘0’ to
‘9’. This dataset consists of 6000
training and 1000 test examples that
the model can implement and iterate
through to detect numbers. Each
dataset used is loaded into batches of
128 samples in size for better
usability and speed when iterating.

The model
A brief description on how the targeted model functions will be given for context and
understanding of how fgsm targets the classes used to detect numbers. Multilayer
perceptron classifier that is used follows a specific structure that the model follows.MLP
consists of an input layer that consists of nodes representing extracted features, 4 hidden
layers where the calculations are performed and epochs generated to produce an output for
the output layer. The output layer generates the final predictions using the processed
parameters from the hidden layer. As the model follows and uses Multilayer perceptron
architecture due to the classifier used, the structure of the Model is as follows:

1. Initialization

The model is initialised with weight nodes and bias with a Multilayer perceptron architecture
in mind. During the initialization phase, the three features are initialised by allocating an input
and output sample. It applies a linear transformation through this function (figure 1):

(Linear — PyTorch 1.8.0 documentation. (n.d.))
This is initialised within a classification class as depicted in figure 2 that uses MLP classifier
and Relu as the activation function. Rectified linear unit (ReLu) is the most widely used
activation function for CNN models due to its speed and adaptiveness to work with values
greater and lower than 0. Furthermore, in order to properly use the stochastic gradient
descent (SGD) as an optimiser during backpropagation; an activation function that acts in a
linear fashion is required.

Figure 2
2. Forward propagation

ReLus ability to act in a linear fashion while being non-linear is its greatest advantage as it
allows for better optimisation functions such as SGD rather than tahn or sigmoid. During
forward propagation, the inputs are passed through the network that applies the activation
function to the weights of the features stated. Relu works as a simple ‘on or off’ switch; all
values greater than 0 are returned normally but those less than are defaulted to zero. This
allows the use of gradient based methods while also preserving the effectiveness of linear
models. This is directly implemented within the classifier class as depicted in figure 3; the fc
parameters are each called and activated thus creating a level of nonlinearity.

Figure 3
3. Loss function

Loss functions are an important element in increasing the performance and effectiveness of
Neural networks. Their purpose is to ensure the gradients/predictions do not deviate too far
from the initial base or goal. Cross Entropy allows the difference between these two values
to be measured through the following equation:

((2024, January). Cross-Entropy
Loss Function in Machine Learning: Enhancing Model Accuracy [Review of Cross-Entropy
Loss Function in Machine Learning: Enhancing Model Accuracy]. Datacamp.com; Kurtis
pykes.)
Due to the multiple classes, a categorical cross entropy function is used where each class's
entropy is calculated and summed. As shown in figure 4 variable criterion is declared using
cross entropy which will later become a used value by FGSM to perturbate the gradients;
emphasising the importance of functions that impact the gradient.

Figure 4
4. Backpropagation

Backpropagation is where the weights and biases are perfected and fine tuned to be as
accurate as possible. This is achieved through gradient lost functions, learning rates, loss
functions and other gradient tuning functions. This model utilises a learning rate of 0.001 and
the SGD optimiser with momentum of 0.9 and decay of 5e-4 depicted in figure 6. The
learning rate as seen in figure 5 is used within the SGD optimisation algorithm that impacts
the ‘step size’ or the value each gradient is updated with. A balancing act has to be made
when choosing the learning rate value. The recommended value is between 0 and 1, a large
Lr can cause the gradient to develop too quickly making it ‘overshoot’ with too many epochs;
while a smaller one can develop too little.

Figure 5
The reason SGD is used rather than traditional gradient descent is due to the large dataset.
SGD works by randomly selecting any data points 1 through n and calculating loss
individually rather than iterating through every data point and calculating the sum of them all.
Momentum is an optimisation parameter that takes into account previous changes to
optimisation that aims to bring it closer to the desired goal. This aids in improving the speed

of calculation by adding the momentum to gradient changes. The purpose if weight decay is
the opposite to momentum’s, that is, it reduces stray gradients in comparison to the general
sum gradient to aid in feature sharing, prevent overfitting, ensure smaller gradients are being
trained and improves generalisation of the optimiser. This also prevents the model from
continuously defaulting the parameters to 0 from a large loss. Due to the small learning rate,
a low weight decay is selected to prevent underfitting.

Figure 6
5. Training

The optimisation methods, forward and backward propagation and initialisation parameters
are iterated through a test and train function n(10) amount of times to reach final output
nodes; which represents the decision the model makes and its subsequent standard
accuracy. The train class depicted in figure 7 shows how each parameter will be iterated
through and what variables are initialised to generate a gradient. The optimiser first zeros all
parameter gradients to ensure generalisation and equality between all data points that aids
in reducing under and over fitting.

Figure 7
The following figure shows the test dataset which will be used to evaluate the training data.
The primary difference between the datasets is that the CNN will not learn from the test data
as it is there for validation purposes. the two primary methods of testing are either after
every epoch is completed or after the final epoch. As this is a smaller dataset the test is
done after every epoch.

Figure 8
The Datasets are looped over 10 times and the results are appended and depicted for better
reading and analysis in figure 9.

Figure 9

Final results:

6. Prediction

The algorithm, having iterated through the datasets and parameters. converges on a final
prediction through many output nodes. This output layer typically can have 1 node, for binary
decisions or many that represent each class. Each node present within the output layer
represents class 0-9 that are paired with a distinct probability obtained through the input and
hidden layer. to gain a better understanding of the influence individual parameters can have
on the accuracy and efficiency of neural networks; adjustable parameters will be altered and
depicted in the following tables.

Effect of metric changes

Weight decay = 5e-4 Weight decay = 1e-4

The optimiser function seems to keep the weight in check creating noticeable but not
extreme changes within loss and accuracy. The accuracy and overall loss does not deviate
too far from the original metric.

Momentum = 0.9 Momentum = 0.1

Momentum is an important parameter to maintain steady loss towards convergence. It
compensates for any underfitting that may occur thus better guiding the loss rate towards a
more accurate value. Too much or too little momentum and the loss function over or under

fits. In this case the overfitting from a lack of momentum has caused almost all predictions to
be wrong.

Learning rate = 0.001 Learning rate = 0.1

The learning rate appeared to have the highest impact on the predictive results outputting a
perfect score. Although this may seem ideal at first the graph that depicts the loss is jagged
and not a consistent curve. Furthermore this means that it is reaching convergence at a
more rapid rate so eventually there will be an undershoot of the loss if more epochs were
added providing a false sense of accuracy.The Neural network could benefit from a higher

learning rate to achieve accuracy much quicker while preventing overfitting; thus saving on
time and resource costs. This makes the CNN model more at risk to the effectiveness of
FGSM attacks due to the perturbation images affecting the accuracy more due to a volatile
loss rate.

Having an understanding of how changes to any function can have an immense impact on
neural network accuracy; A fast gradient sign method will be used to conduct an adversarial
attack on the CNN.

The Adversarial attack
Fast gradient sign method (FGSM) is one of the most reliable and effective adversarial
attacks due to its simplicity and versatility. FGSM can be catered to different levels of
knowledge about the NN it targets, for NN that have no classes, untargeted FGSM can be
used. For this CNN it will be assumed that the attacker has complete knowledge of how the
CNN discussed in this report functions; therefore FGSM will be used to target classes.
FGSM perturbates the images using the following formula:

Epsilon is the primary additive that changes the initial loss gradient so it collides with a
different class; with x being the initial image gradient. The sign input is the gradient loss of a
specific class image. Shown in figure 10, is the FGSM class where the loss function criterion
is used to gather the gradients x for the targets (classes). The perturbation is then added to
create the adversarial image.

Figure 10
Before Adversarial attack:
The initial prediction with an accuracy of 79% is shown below

After Adversarial attack:
The perturbation images that CNN detected were classified wrong. The perturbation
adds noise as shown in the second image which shifts the gradient of the data point
to sit where the class zero data points sit.

Changing the epsilon from 1/255 to 10/255 to 2000/255:

Epsilon 10/255

Epsilon 2000/255

As depicted in the above figures, small changes can have a large effect on whether the
network classifies the numbers correctly or not. As shown in section 6 of the model, the
effect metric changes have on the final output can rapidly change how the hidden layer
computes and processes the input gradients. The interaction between loss and the learning
rate shows how small changes to the loss gradients cause extreme results in accuracy and
perturbations. Due to this interaction the effectiveness of FGSM has been quantified and
proves the fragility of neural networks. Examples of FGSM can be seen within society and its
effect on adopted neural networks. For example:

● This is especially a concern as self-driving vehicles rely on similar CNN models to
detect their surroundings. If an object/classification of a human data point is
perturbation the CNN model might miss-classify the human object for a road;
consequently becoming dangerous towards public safety

3. Metrics and results

MERGED WITH SECTION 2 REASONABLE SOLUTION ON
THE PROJECT!

4. Conclusion
The advancements in Artificial intelligence will pave the way for rapid adoptions throughout
all aspects of business and personal life. As a result new methods of attack that aim to
compromise the integrity of the NN will become more prevalent putting at risk the privacy
and safety of individuals. These will come in the form of adversarial attacks such as FGSM
that will be used to target critical CNNs, that may in the future; play a critical role in
Autonomous vehicles, banking, education and other services. Therefore it is important to
understand the parameters used in the various loss, optimisation and gradient functions to
gain a better understanding of how adversarial attacks impact CNNs.

References
● Lab 7 - Adversarial_Attack_2024 notebook(Data set, code, result figures, CNN and

adversarial attack)
● Linear — PyTorch 1.8.0 documentation. (n.d.). Pytorch.org.

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
● (2024, January). Cross-Entropy Loss Function in Machine Learning: Enhancing

Model Accuracy [Review of Cross-Entropy Loss Function in Machine Learning:
Enhancing Model Accuracy]. Datacamp.com; Kurtis pykes.
https://www.datacamp.com/tutorial/the-cross-entropy-loss-function-in-machine-learni
ng

● Multi-layer Perceptron a Supervised Neural Network Model using Sklearn. (2023,
October 12). GeeksforGeeks.
https://www.geeksforgeeks.org/multi-layer-perceptron-a-supervised-neural-network-
model-using-sklearn/

● Mandal, M. (2021, May 1). CNN for Deep Learning | Convolutional Neural Networks
(CNN). Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/

● Jason Brownlee. (2019, January 24). Understand the Impact of Learning Rate on
Neural Network Performance. Machine Learning Mastery.
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-de
ep-learning-neural-networks/

● https://www.facebook.com/jason.brownlee.39. (2016, March 22). Gradient Descent
For Machine Learning. Machine Learning Mastery.
https://machinelearningmastery.com/gradient-descent-for-machine-learning/

● Brownlee, J. (2021, January 31). Difference Between Backpropagation and
Stochastic Gradient Descent. Machine Learning Mastery.
https://machinelearningmastery.com/difference-between-backpropagation-and-stocha
stic-gradient-descent/

● Gomes, J. (2018, January 17). Adversarial Attacks and Defences for Convolutional
Neural Networks. Onfido Tech.
https://medium.com/onfido-tech/adversarial-attacks-and-defences-for-convolutional-n
eural-networks-66915ece52e7

● Sciforce. (2022, September 7). Adversarial Attacks Explained (And How to Defend
ML Models Against Them). Sciforce.
https://medium.com/sciforce/adversarial-attacks-explained-and-how-to-defend-ml-mo
dels-against-them-d76f7d013b18

● Sen, J., Sen, A., & Chatterjee, A. (2023). Adversarial Attacks on Image Classification
Models: Analysis and Defense. ArXiv (Cornell University).
https://doi.org/10.48550/arxiv.2312.16880

● Campagne, J.-E. (2020). Adversarial training applied to Convolutional Neural
Network for photometric redshift predictions. ArXiv (Cornell University).
https://doi.org/10.48550/arxiv.2002.10154

● Python, R. (n.d.). Stochastic Gradient Descent Algorithm With Python and NumPy –
Real Python. Realpython.com.
https://realpython.com/gradient-descent-algorithm-python/#:~:text=Stochastic%20gra
dient%20descent%20is%20an

● Roy, R. (2019, February 15). ML | Stochastic Gradient Descent (SGD).
GeeksforGeeks. https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/

		2024-11-22T22:41:31+1100
	Christo-Odysseus Keramitzis

